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Distribution of scales in turbulence
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The physical structure of convoluted surfaces and fluid interfaces in turbulence is quantified by a distribution
of geometric scales. A scale measure suitable for multidimensional surfaces and a one-to-one correspondence
between the scale distribution and the coverage dimension are used to analyze the scale dependence of the
interfacial geometry. Application to concentration interfaces in a turbulent mixing flow indicates that the
statistical laws exhibited at the small scales can be quantified and modeled. Based on the scale distribution,
dimensionless measures of folding and wrinkling of the fluid interfaces are introduced which are useful to
quantify the contributions of the large-scale and small-scale turbulent flow structure to the interfacial geometry.

PACS numbgs): 47.27.Ak, 02.50-r, 47.53+n, 47.27.Qb

. INTRODUCTION ity gradients at large Re, resulting in complex vortical struc-
ture. If the Schmidt number is also large, i.e., for large values
In turbulence and other nonlinear complex phenomenagf the Pelet number Pe Re Sc, fluid interfaces may also be

there is a challenge of bridging the knowledge that is beginexpected to exhibit convoluted structure, such as for the con-

ning to be acquired with direct numerical simulations andcentration isosurfaces or level sets,

careful experiments at low and moderate values of the non-

linearity parameter, or Reynolds number in the case of tur- c(x,t)=const=c*, (3

bulence, to what needs to be known at large values of the

nonlinearity parameter, or large Reynolds numbers. In thevherec* is a scalar threshold corresponding physically to a
context of velocity- and vorticity-field statistics in turbu- particular local degree of mixing, or composition, attained by
lence, this question has been asked traditionally in terms ahe fluid. The resulting physical structure of the interfacial
spectra or structure functions, with the Kolmogorov power-surfaces must be quantified in order to understand, predict, or
law as a good example of how one may use a power-law, igompensate for a variety of phenomena that rely on molecu-
that case, to bridge length scalgs-5]. In the context of |ar diffusion, chemical reactions, or electromagnetic/acoustic
turbulent mixing, which is important practically, a crucial wave propagation across fluid interfaces, e.g., mixing, com-
feature is the geometry of the fluid interfaces. How does on@ustion, aerooptics, or aeroacoustics. The area-volume ratio
extrapolate knowledge of the structure of interfaces, or levebf mixed-fluid interfaces, in particular, is crucial to quantify
sets, to high Reynolds numbers? What tools must be deveihe total amount of mixing, or mixing efficiency of the flow.
oped to address this issue? How should they be applied? Classically, the statistical properties of turbulence-generated
Turbulence-generated fluid interfaces are observed to bgelds have been analyzed typically in Fourier space, rather
highly convoluted over a large range of scales, e.g., the inthan physical space, and, in particular, in terms of power
terfacés) between two or more fluids mixed by high- spectra of derived flow measures. Descriptions based only on
Reynolds-number shear layers or jeis7]. For incompress-  power spectra, however, do not retain any phase information
ible flow and mixing of a simple fluid, for example, the from the Fourier transforms and, in general, cannot uniquely
velocity field, u(x,t), and concentration fielde(x,t), are  provide information on the physical structure of level sets or
governed by the Navier-Stokes and scalar evolution equdsosurfaces. Quantifying and predicting length, area, or vol-
tions, ume properties of isosurfaces necessitates the development
of a physical-space geometric framework. Beyond a mini-
gu+u-Vu=—Vp+ ivzu, (1) mum Reynolds number of Rel0%, turbuler!t flows_may be
Re expected to be fully-developed and associated with a host of
similarity propertied7]. For large values of the Bket num-
ber, there have been proposals of geometric scaling or fractal
behavior of fluid interfaces such as concentration isosurfaces
or level sets. Scaling behavior of fluid interfaces would have
in dimensionless form, constrained by mass conservatiorimportant consequences fundamentally and practically
V.u=0, and appropriate initial and boundary, or inflow and[8-10,6,11.
outflow, conditions. Turbulence is flow at high Reynolds In general, despite the simplicity of the governing laws,
numbers and, in three dimensions, is associated with nonlimany phenomena exhibit complexifg2,13. This can be
ear vortex stretching and near-singular behavior of the veloctraced to the breaking of symmetry properties of the equa-
tions by imposed initial or boundary conditions, the develop-
ment of instabilities, and subsequent nonlinear pattern for-
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structures and dynamics that span a wide range of space-tinamd the fractal case, i.eDy4(\)=const, is then a special
scales. Far from equilibrium, the lost symmetry can be recase. IfD4(\) # const, however, as may be anticipated to be
stored resulting in statistical symmetry properties which maythe case in general, there will be no power-law-like behavior
often be understood in terms of similarity and scaling argu-of the coverage function, i.eNg(\)#X~Pd™_ While the
ments. For a variety of phenomena, including turbulencecoverage dimension, at a scalecan still be identified as the
there have been suggestions and reports of power-law scalifgactional decrease in coverage,dNy/Ng4, per unit frac-

of surfaces or interface$,14,10,1%. Such conjectures and tional increase in scal@\/\, it implies the more general,
findings are cast in terms of a constant fractal dimensiomonpower law,

identified as the scaling exponent of the assumed/observed

power law. Fractal geometry is able to quantify structures of 3 AN
Ng(N)=ex f Dg(A )T (6)

a higher level of complexity than Euclidean geometry.
Whereas Euclidean objects have structure on a single, large

spale only, fractal objects exhibit the same structure on many 9] where 8, is the largest scale of the object. For data of
different scales and are characterized by power 6% A finite extent,s, can be computed as the size of the bounding
higher level of complexity yet can be expected: differenty,y andn (5,)=1 by definition. The physical interpretation
structures, or structures of different complexity, may appeags iheo general behavior expressed in E&).is that the com-

at different scales with more general, non-power-law statisyexity of structures across a wide range of scales can con-
tics, e.g., lognormal, Poisson, etc. These considerations S“ETbute to the coverage behavior at any onscale.

gest a three-level hlgrarchy of cpmplexny. . Evidence of coverage dimensions that are smooth func-
Level 1: complexity only at single scaleuclidean ge-  {ions of scale has been reported, for example, for Brownian
ometry _ motion [19,20,, coastlines[21], topographic surfacef22],
Level 2: complexity same at all scalepewer-law or 50t re network survey§23], lung tissue of prematurely-
fractal geometry ) . born rabbitg24], solar granulatiori25], and the galaxy dis-
Level 3: complexity may vary with scaleseale- ihytion in the universé26]. Various terms have been em-
dependent geometry , , ployed to denote such non-power-law behavior: differential
_ Classical examples of power-law scaling laws are isometgacia) superfractal, semi-fractal, etc. An analytical expres-
ric or proportionate scaling refations for the aréaor vol- - qjqh for the coverage-dimension functioBy()), has also
um.e,V, of IZEuchdean gb,JeCts such as disks or_spheres, fo[)een offered for 1D Brownian motiol9] and results in a
which A~L* andV~L" in terms of a characteristic length i ansjon that increases continuously with scale from unity,
scale, L. Nonisometric, allometric, or disproportionate at small scales, to 2, at large scales. This expression was
power-law scaling relations are also possible. Indeed, Galilgiy, g 1o compa,re well with measurements of Brownian mo-
[17] pointed out that the bones of large animals must bgj, 150] For the perimeter of lung tissues of prematurely-
scaled out of proportion to their linear dllr&'_)nensmns in order % ormn rabbits, a coverage dimension expression which
support the animal's weight, e.gR~L"> with a dimen- gq6thiy increases with scale was also propozd. A
sional prefactor, wher& Is thg bone diameter and the suggestion of corrections to power-law scaling has also been
length of the bone. Such fractional-power or fractal laws arg,age to describe objects that do not exhibit exact power
linear n Rlchardsqn's log-log coverage-scale' RIA], with laws in terms of exponential and logarithmic dimensions and
a negative slope given by the power-law scaling exponent 0% metadimension, in addition to the fractal dimensia].
fractal dimension. Fractal geometry is a manifestation Ofrpe three proposed dimensions appear as multiplicative cor-
self-5|m[lar|ty, both terms qomed by ManQerrbt4], For rections, however, and would result in a quantity which no
such objects, coverage statistics are described by power Ia"VS‘nger has the meaning of a local dimension, i.e., of a local

with & constant coverage dimensidpy, i.e., scale-logarithmic derivative of the coverage. Models of non-

power-law behavior have also been proposed in terms of
dNg(N) dx scale-dependent variants of fractal geometric constructions.
Ng(A) N (4) Examples are scale-dependent Cantor d@8t and scale-
dependent Koch island®21]. The analysis of such models
has been conducted on a case-by-case basis.

A framework will be described and demonstrated below
which can quantify the scale dependence of the geometry of
convoluted surfaces and interfacg28,29. The proposed
framework establishes a fundamental, one-to-one correspon-
fer to a temporal, spatial, or space-time scale. dence between coverage statistics and the underlying distri-

rg)utlon of scales, in the form of a transform pair, and can be

In various phenomena, however, the coverage dimensio used to quantify multidimensional geometries. There are
Dy, has been observed to be a smooth function of scale, i.e d 9 '

. -Other means to analyze multiscale phenomena, e.g., in terms

Dg4(N\). In such cases, a scale-dependent coverage dimensig . : : .
: : o o Lo of multifractals or wavelets. Of particular interest here is the

can still be identified as a local logarithmic derivative of the

coverage function development o_f a framewo_rk based on a particular measure
' of scale that will permit a direct connection to coverage sta-

tistics of fluid interfaces and hence space-filling properties
dNg(M)/Ng(N) _ dlogNg(N) (5  Such as the area-volume ratio. In addition to the practical
dN\/A dlogh '’ interest in such quantities in the context of mixing, there is a

Ng(X)~\"Pd

where the latter form is dimensionless adg(\) is the cov-
erage function at a scabe in d dimensions. The coverage,
Ng4(N\), counts the number of nonoverlapping boxes of &ize
needed to cover the object under study, out af-partition
of the d-dimensional embedding space. The soalmay re-

Dg(M)=—
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fundamental interest concerned with the small-scale geon{36], such that 8=F4(\)<1 with Fy4(5p) =1. The coverage
etry of the fluid interfaces and the possible development ofraction measures the degree to which the object fills space.
singularities, or near-singularities, in the vorticity field of We can consider the casi=o without loss of generality.
unsteady spatially-three-dimensional high-Reynolds-numberhe proviso “interior to the bounding box” will be implied
flows, associated with local growth of the velocity by non- for the finite-9, case. The ensemble-averaged coverage frac-
linear vortex stretching. Such questions are important physijon denoted in the following also &&y(\), can be identi-
cally because they may shed light on the nature of regions gjeq as the geometric probability that a randomly-plaaed

_high dissipation of energy and large rate of molecular mi)_('b X, interior to the bounding box, contains part of the set,
ing, and because they may lead to developments of canonic g

or universal models of small-scale struct(iB].

II. DISTRIBUTION OF SCALES Fa(M)=p(A)=1=per), ®

There are numerous observations of phenomena whosgherepc(\) is the probability that a randomly-placadbox
structure and dynamics span a wide range of space-timeontains at least some part of the level set, pgd ) is the
scales[14,13. How are such scales distributed? What is aprobability that a randomly-placed-box does not contain
useful measure of scale for this purpose? In the context odiny part of the level set. With this interpretation of the cov-
fluid interfaces generated by high-Reynolds-number turbuerage fraction as a geometric probability, the connection be-
lent flows, such as concentration interfaces, density isosutween coverage statistics and scale distributions can be
faces, or vortical interfaces, the surfaces are unsteady angade.

Fhree-dimenSional Spatially, in general. It appef’:lrs that fluid In one-dimensional space, the coverage dimension of
interfaces can be highly convoluted over a wide range ofeve| sets consisting of points can be connected to the prob-
scales but may also exhibit simple, organized, large-scalgpjjity density function(PDP) of the “gaps” between the

features directly deducible from the large structy@5-33. ¢ ccessive points, i.e., the point spacing. An example of a

ﬁeggggtl}gg\;ﬁy %isecrtlﬁgf\?voﬂfl dtg? g Iirr:t%rifsaccelirgir?g?rleggn ;ﬁﬂpomt set is the set of level crossings of a particular threshold
butions,of the large-scale and small-scale turbulent flo ;" a s_calar or velocny-compor_went signal in aturbulen? flow.
structure to the geometric features of the interface. Tr\]'\ebon3|<jer a stocha§t|c, statlstlcglIy—'homogeneous,' point pro-
framework described below offers a means to quantify the ©SS: 1N space or time, with a d|str|but!on of spacing scales,
distribution, or probability density functiofPDF), of scales le., mterva!-lengths between successive events of the pro-
for convoluted surfaces such as fluid interfaces in turbulence&®SS: described by a PDB,(1), wherel=0 denotes a spac-
A quantitative measure of scale is necessary for this purposé!d Scale. From dimensional and geometric considerations,
While there are different ways to quantify scales and theithe fraction of length spanned by arscale will bem,(l)
distributions, we would like to make a connection to cover-*! pi(l). This can be viewed also as the geometric weight-
age statistics and dimensions, and, thereby, to extend fract#lg of the scales. The probability density that a random lo-
geometry and quantify the scale-dependence of length, aregation, with uniform measure on the real line, lies inlan
or volume measures. In 1D space, we will be concerned, fospacing can be written, therefore, as
example, with level sets consisting of points that can arise as
crossings of a certain threshold of a 1D physical signal in [pa(l)
space or time. These crossings, in turn, may be viewed as my(l)=
linear transects of corresponding surfaces or interfaces in
higher-dimensional space. The notion of coverage dimensiog,q |
remains useful in scale-dependent geometries as it provides
guantitative measure of the geometric complexity at a giver?%
scale.

Allowing for a coverage dimension that may vary con-
tinuously with scale, we proceed to investigate the conse- "
quences of a scale-dependent coverage-dimension function, pe()\):f ge( A [Hmy(Hdl
Dg4(N). We will consider the coverage of a level set, al- 0
though the concepts apply to other geometric objects. In
practice, coverage statistics of a level set are computed by a _ fw( 1— f) my(1)dl
partitioning/box-counting algorithm: a5,-sized bounding N I
box containing the level set is first partitioned Mt o)
nonoverlapping, contiguous-sized tiles in 1D, squares or :Jw A (hdl (10)
rectangles in 2D, cubes or parallelepipeds in 3D, etc., and A T P1 ’
then the numbeNy(\) of such\ elements that cover the

level set is counted. By definition<ONg(\) <Ng o). ThiS  wheregg(\|l) is the conditional probability that a randomly-

, where ImEJ:Ipl(I)dI, 9

Im

m can be interpreted as the mean spacing scale. The
ometric probability that a tile, randomly located on the
eal line with uniform measure, is “empty,” i.e., contains no
points, can be written as

naturally leads to the dimensionless coverage fraction,  placed\ tile contains no transitions, given that it lies in n
d spacing; cf. Fig. 1. The probability thatatile lies in anl
Ng(N\) A AT : S
Fa(\)= = —] Ng(\) spacing is given by the geometric weighting of the scales,
N o) | Ob m,(l), cf. Eq.(9). By aA tile lying in anl spacing we mean

5 N that a reference point of the tile, e.g., the left end point of the
= | Pt d= D) 7 tile, lies in anl spacing. The coverage fraction can be ex-
ex [d—Dg(\")]— (7) . .
A A pressed in terms of the spacing-scale PDF, as
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A 1D, that can also be connected to coverage statistics, is the
largest-empty-tiléLET) scale. This scale measure will prove
_ useful in extending the scale-distributions framework to
_——— - - _———- higher dimensions, further below. The LET scale is defined
] as the size of the largest tile, centered at a random location,

that is “empty,” i.e., does not contain any part or point of
FIG. 1. Schematic of interfacial crossings along a linear transecthe Set. It can be viewed as a first-waiting time scale, in the
indicating a spacing scalé, and a coverage scalk, context of temporal point processes. The PDF of this scale,
f1(\), can also be interpreted as the probabilitiensity
1 [\ [ that a random point is a distanaé¢2 away from the nearest
Fl()\)zl—JO ﬁ\’pl(l)dl dn’, (1)  element of the point set. Equivalenttfs(\) is proportional
m to the number fraction of intervals of size greater tharf

which can be interpreted geometrically as the fraction oipl(l)_ is fini'_[e_, Le., if the spacing-scale distribution exhibits
length spanned by spacing scales withx and a contribu- no singularities, then it can be shown that

tion from spacing scales with>\. The limiting behavior of 1 (e

the coverage fraction, at small scales, B;(N)~MN1, fl()\):_J’ p,(hdl=
—0, as A—O0, i.e., the mean spacing scalg,, alone, ImJx
determines the smaNl- scaling. At the large scales o

—o, F;(N)—1, as expected. The coverage dimension, cfwhich is relevant to bounded, continuous distributions such
Eq. (5), can be expressed too in terms of the PDF of spacings lognormal, power-law, Poisson, etc. These considerations

dFi(N\)
(o) .

(15

scales, result in the LET-scale distribution transform pair,
- Aa(n
A paa D=1 ) (16)
Di(N)=1-——7 , (12 ffl(x')dw
ffpl(l)dld)\’ 0
0 J\'
and

which may be interpreted in terms of the fraction of length
spanned by the spacing scales. This implies that the small- 1-D )
D > i ) 1(\) w0 dA
scale and large-scale limiting behavior of the coverage di- fi(N)= —exp{ _f [1_D1()\r)]_]_ (17)
mension will be, respectivelyD;(A—0)—0 and D;(\ A \ N
—»)—1, as required for the coverage of 1D point sets. The
relation expressed in Eq12) can be viewed as a forward In the 1D framework, the spacing scale, e.g., distance be-
scale-distributions transform, connectipg(l) to D;(\). It  tween successive level crossings, is a useful scale measure
can be used, therefore, to transform scale distributions intvhich can be connected to coverage statistics. In
their corresponding coverage dimensions. The inverse scalé-dimensional space, however, the spacing scale does not
distributions transform, connecting the coverage-dimensioigeneralize naturally. A different scale measure is needed,
function to its corresponding PDF of spacing scales can alstherefore. The significance of the LET scale is that it can be
be obtained, generalized naturally to higher dimensions.
In d-dimensional space, the coverage fractieg(\), will
I'm dDq(1) in general be a function of the scale vectoh
p1(|)=|—2{D1(|)[1—D1(|)]+| di ] =(N\y,\p, ... \g). For example, for 4D space-time data,
A= (N, Ay, Az, Np). Under certain symmetry conditions, in-
w dl’ dicated by the physical nature of the problem, it will be
><eXp| —ﬁ [1—D1(|’)]|—,},

(13 useful to consider the dependence of the coverage fraction on
the scalar scale)\, defined as a geometric mean,
=(A\y...\g)¥. For the case of round turbulent jets, for

where the mean scalgy, can be expressed as example, slices of the concentration field normal to the jet

, axis will be statistically axisymmetric so that it will be useful
Imzlim{l exp{ fw[l—Dl(I’)]i ] 14 10 choose?\z(xxxy)l’z, where thek, and \, scales in the
10 [ |’ box-counting and partitioning process are pegged to the
bounding-box scalesg, and ,. The coverage fraction,

An equivalent relation was obtained, by a different deriva-F4(\), can be identified as the geometric probability that a

tion, for zero crossings of stochastic Gaussian functi@is randomly-placed box covers part of, whereS denotes the

Extensive related results and properties have been derivexstt under study, as noted in the discussion of(Bg.The set

before for the special case of Poisson statiftg&39, but S could consist of points, lines, surfaces, etc., embedded in

the present treatment is neither restricted to nor relies on thihe d-dimensional space. The coverage fraction can be inter-
notion of Poisson behavior. The relations expressed in Eq@reted as a cumulative distribution function of a particular

(12 and (13) constitute the general 1D scale-distribution measure of scale. The differential coverage fraction can be

transform pair. An alternative measure of geometric scale, imssociated with a PDF4(\), where
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FIG. 2. Schematic of a fluid interface and a largest empty box FIG. 3. Schematic of surfaces constructed such that they are
(LEB) of size\. The LEB scales are the sizes of the largest possibleequidistant to the fluid interface. The offset distance/B, wherex
boxes, centered at random locations, that do not contain any part if the LEB scale corresponding to LEBs centered on these surfaces.

the interface. " . .
An additional useful interpretation of the LEB-scale PDF,

dF4(\) f4(\), can be made as a measure of area/volume properties.
fq(N)= A (18) From the definition of a LEB scale, we can expect that the
dA set of points at which the size of the LEB scala iwill have

a measure associated to thélength, area, etcdetermined
The PDFfq(N), can be interpreted geometrically as the PDFpy £ (\). This set of points will be at a constant distance,
of a particular measure of scale: faegest-empty-bok EB)  \/2 “away from the level set. For example, for the coverage
scale,\, defined as the size of the largest box randomlyof 5 |evel-set contour in 2D or isosurface in 3D, this set of
placed, that is empty, i.e., covers no partdfsee Fig. 2 points would be curves or surfaces, respectively, equidistant
Equivalently, the LEB scala is a measure oftwice) the {0 the level set and spaced by a distance given/y This is
distance from a poinP to the nearest element & The jjystrated in Fig. 3 which shows that, in general, there will
LEB-scale distribution(PDP), f4(\), satisfies the required pe a family of surfaces on either side of the level set. We can
normalization condition over the range of spatial scales, i-e-expect,a priori, that the LEB-scale PDF will be, in general,
Jofa(N)dA=Fg4(=) —F4(0)=1. The coverage dimension, an increasing function of decreasing The LEB-scale PDF,
Dg(N), can be expressed, therefore, in terms of the distribuf,(\), can be interpreted as a scale-dependent measure of

tion of LEB scalesfy(\), i.e., the surface-area/volume ratio, in 3D, of LEB surfaces that
are equidistant from the isosurface by a distarce/2. In
Ag(N) particular, the small-scale limit of the LEB-scale PDF, i.e.,
Dy(N)=d————, (19 X
fo Fo(A ")l im fy(\) = 5, (2
A—0 m
coverage dimensiorDy(\), directly, i.e., the area-volume ratiocd,/Vy4, whereA, is the surface area
of the level set and/y4 is a normalizing volume, e.g., the
d—Dy(N) o , ! volume spanned by the embedding space. The area-volume
fa(N)= N exp — \ [d=Dq(A )]T - (20) ratio itself offers anothetinverse length scale,
Ay 1
These relations constitute thed-dimensional scale- V_d: e (22

distribution transform pair. The above framework is not re-
stricted to statistically homogeneous geometries. In generalyhile for the special case of Poisson statistics this inverse
the probability of covering the set with )a box, interior to  area-volume ratio scale is identical to the mean LEB scale,
the &, box, will be a function of position within thé, box.  i.e.,A,=\,, we can expect that in general,#\,, as is

For a set contained in é&dimensional bounding box of size the case in turbulence.

dy, the coverage fractionf-4(\), can be identified as the To quantify the structure of multidimensional surfaces in
geometric probability that a randomly-plackdoox, interior  general, it will be necessary to analyze the dependence of
to the outers, box, covers part of. For spatially inhomo- coverage statistics on all scales and the corresponding distri-
geneous statistics, the functidfy(A) represents the prob- bution of such scales, in terms of the scale vector,
ability of coverage for a\ tile placed in thes, box without  =(\;,\5, ... \q). The coverage fractionf4(\), corre-
regard to its location. sponding to the coveragdly(\), is
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Ng(N) I ‘ '
Fo(N)=—7—"T, (23
I3
i=1 |\
cf. Eq. (7), where 6=(61,6,, ...,5q) is the scale vector

corresponding to the multidimensional bounding box. The =
coverage and coverage fraction are related to the coverag
dimension,Dy(\), by

dlogNg4(N) | dlogF4(N)

Da(M)= - dlog X dlogn

(24)

i.e., the coverage dimension becomes a vectDg
=D D@, ... D), where!| here denotes the unity (a) L,
vector I=(1,1,...,1). In the particular case of fractal or

self-affine scaling, i.e., if Dg(\) is a constant or 1.0[

. oM p@ 5@ .
A-independent vectoMg(A)~N ¢ A, .. N ¢, cf. dis-

cussion of the power law in E¢4). In the general case, 081

d o)
Nd()\)=exp( 21 .

iDEP(AQ%), 25) oor

D,(M)

so that, as required at the largest scalkg,0)=1. In the

scale-dependent case, in other words, the complexity of i
structures at different scales can contribute to the coveragt o2+
behavior at a particular scale. The LEB-scale distribution i
becomes a joint probability density function of LEB scales,

0.0k . . . !

fa(N), normalized so that 1 0 1
b Wi
N N (b) logio (V)
fo s fo fa(M)dA=1, (26) FIG. 4. Scale distributiofa) and dimension as a function of

scale(b) for Poisson point processes. Theory: solid line; simula-

for data bounded in a multdimensionatsized bounding tons: squares.

box. This scalar-valued PDF retains the original geometric

meaning, i.e., as the probability density of finding@ized layers, measurements of the spacing PDF were reported to
largest empty boXLEB), but is now a joint probability den- exhibit Poisson statistidg0]. For Poisson random point pro-

sity of the LEB-scale vecton. cesses, in general, i.e.,
These considerations are particularly useful for quantify-
ing and modeling the spatial or space-time structure of con- p.(Ddl=exp(—1/1,)dl/l,, 27

voluted surfaces. For example, this framework is useful in
the context of quantifying the physical structure of fluid in-
terfaces and the total amount of mixing or mixing efficiency
in turbulent flows. The space-time analysis enabled by this

framework is relevant to the study of the evolution of sur- Ml
faces in general, and of the dynamics and velocity distribu- Di(M)=1- eMm_1"
tion of spatial structures of different sizes and shapes in tur-

bulence, in particular, such as mixed-fluid interfaces and
vortical structures. Figure 4 compare®;(\) to an ensemble-averaged result

from five Monte-Carlo simulations. For each simulation, a
ll. STRUCTURE OF CONVOLUTED SURFACES AND randomly-placedL-record, whereL/I,,=1000, was parti-
FLUID INTERFACES tlone_d successively into smallerintervals and the coverage
fraction computed for each. The standard deviation of the
In the context of turbulent flows, Poisson and lognormalensemble-averaged Monte Carlo estimates is smaller than the
scale distributions are particularly relevant as they have beesymbol size. Poisson processes, in general, therefore, are as-
reported for level crossings of velocity and scalar signalsociated with a coverage dimension that increases smoothly
measured in various flowg!0,41. In grid turbulence, ex- with scale. This was pointed out, qualitatively, in early stud-
ploratory investigations of zero crossings of 1D velocity sig-ies of the fractal facets of turbulen¢®]. Lognormal statis-
nals in grid turbulencd42] measured the mean spacing tics for the PDF of spacings derived from 1D level crossings
scale,l,, which determines the small-scale behavior of thehave also been reported. Examples include scalar measure-
coverage fractionF;(A—0)~\/l,. In turbulent boundary ments in turbulent jetf43,29 or in plumes dispersing in the

the coverage dimension function is

(28)
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FIG. 5. Scale distributiorta) and dimension as a function of  F|G. 6. Scale distributior(a) and dimension as a function of
s_cale(b) for lognormal point statistics. Theory: solid line; simula- g¢gle (b) for 1D power-law statistics over three decades (
tions: squares. =3/2,1,/1,=10%. Theory: solid line; simulations: squares.

atmospheric surface laypt1], and velocity measurements in terms of the standard-deviation parameter, allows the
turbulent boundary layer40]. For a lognormal spacing- spread in the variation ob,(\) values with scale to be

scale PDF, i.e., varied. It is interesting that the qualitative differencepif{!)
5 for small spacing scales, in the lognormal and Poisson cases,
pu(hdlI=exp{ —[In(I/1 )/ o+ o/2]%/2}dl/ (V2 ol), does not have a significant effect in the coverage behavior,

(29) cf. Figs. 4 and 5. This can also be seen from @4§). Power-

the coverage dimension is

1 adl/lq, for
|| 1+erf (In(\/1,) o— al2)//2] "
Dl()\)zl_ 1+— . pl(l)dlz a(l/ll) le/ll! for
N 1—erf (In(\M1 ) o+ o/2)/ 2]
(30) 0 for
This is compared with ensemble-averaged results from fiv&€orrespond to a dimension function,
Monte-Carlo simulations with./I,=3000 in Fig. 5. Similar . N
gualitative behavior was also observed through other simu- = 1
lations based on a lognormal PID#3]. Comparison of Figs. 2(v—a " )(v=1)=Nly,

4 and 5 shows that Poisson and lognormal statistics are as- _ _ v—1
sociated with a coverage dimension function that exhibits Dy(\) =y Ala/A+(1=n)(2/0) ,
similar “S-shaped” behavior. In both cases, therefore, the 2= v+ BliIN=(1,/N)" 7t
dimension increases smoothly with scale with a scale depen- 1,

dence that reflects the underlying spacing-scale distribution. )

There are two notable differences. The lognormal dimension

law statistics forp,(l), over a finite range of scales, e.g.,

1<y,
h<I<lz, (3D
I,<l,

for 1<l

for I,<I<l,,

for 1,<lI,
(32)

exhibits a reflection symmetry in logcoordinates about the where a=1—1/v, a=l,/l;, B=v(v—1)a’ 12, andl,
mean-scale poinfx=1,,, D;(A\)=1/2]. Second, the addi- =(v—1)(a® "= v/2)/[(2—v)/(v—a’"")]. This is plotted
tional degree of freedom afforded by lognormal statistics inin Fig. 6, for v=3/2 andl,/l,=1000, i.e., for power-law
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1.01 "] Di(N)=D;=const, (34
0.8 ] or, equivalently,F;(\)~\1"P1, for A;<\<N\,, then Eq.
(13) can be used to show that
0.6 .
< pa(1)~17Px 7, (39
S I
0.4 .
A with a dimensional prefactor. Therefore, while a power-law
- coverage fraction, over a range of scales, implies a power-
o2r ] law p4(I) in the same range, the converse is not true. This is
[ ] a manifestation of the non-local, integral nature of the for-
0.0 S L ward transform, cf. Eq12) and related discussion. A special
@ S -4 =3 2 TOT Céx/e 1) 23 405 case of the continuous, power-law scale PDF of @), for
910 " a power-law exponent of=1, has a coverage dimension
R S which increases continuously with scale, as shown in Fig. 8
1.00 1 (left). Another special case of E31) is a power-law PDF
i , with an exponent of’=2 and this has a coverage dimension
0.8~ 7] which also increases smoothly with scale, as shown in Fig. 8
L . (right). The caser=1 is significant because it involves a
0.6 - _ simple, dimensionless weighting of scales which has been
-~ - . used in the description of turbulent shear-layer mixXiag.
= - T ] The coverage dimension function need not be monotonic.
0.4} y For a single-scale PDF, e.g., equally-spaced points on a line,
i 4 the coverage dimension can be shown to exhibit a step-
ool N increase at the characteristic scale of the PDF. This behavior
oL implies that the only change in the complexity of the set, as
i 1 a function of scale, occurs at the single characteristic scale of
0.0 e b L the PDF, as may be arguedpriori. A two-scale PDF,
-5 -4 -3 -2 -1 0 1 2 3 4 5
(b) logo (V)
FIG. 7. Coverage dimension as a function of scale for power- pa(l)= 55(| —|1)+§5(| —13), (36)

law point statistics imposed over six decades and over eight
decadegb), with v=3/2.

has the coverage dimension
scaling imposed over three decades. Comparison to five

Monte Carlo simulations witH./l,=4000 is also shown. 0, A<y,

The limiting case],/1;>1, for a power-law distribution of

scales is interesting since it may be expected to correspond D,(\)= ! <A<y, (37)

to a vanishing finite-size effect. It can be shown, from Eq. 1+N 1y

(12), that 1 <\,
D;(N)—conseEv—1 for [,<I<l,, (33

as shown in Fig. dleft). The analytical coverage dimension
for 1<v<2, i.e., the coverage dimension is expected to as¢hanges only in the range of scales bounded by the two char-
ymptote to a scale-independent plateau in this limit. This j@cteristic scales, and decreases with increasing scale, in that
examined in Fig. 6 where the dashed line corresponds to tH&nge, so that the behavior of the coverage dimension is non-
case ofv=23/2, for example. It is surprising that the coverage monotonic. This behavpr is cpnﬁrme'd by numerical results
dimension does not display a clear plateau, even though tHgom 4 Monte Carlo simulations with./lI,,=3000, also
imposed power-law scaling spans, in this case, three decadg@@0wn in Fig. Aleft). The discrepancy, at one of the smaller
of spacing scales. It follows, therefore, that the finite range ofcales, between analysis and simulation stems from the dis-
scaling has a strong influence on the coverage-dimensioff€te nature of scales employed in the box counting. Discrete
behavior. This observation is significant because it impliedractal-like objects can also be generated, corresponding to
that finite-range power-law scaling of the scale distributionstochastic statistically-homogeneous variants of well-known
will not translate to a clear plateau By (\) unless the scal- ractal sets,
ing range is very large. For example, Fig. 7 shows the cor-

responding results for power-law scaling imposed over eight a—1 Nt lo
or ten decades. Again, it is surprising how slowly the pl(l)=mk20 aks I—BR), (38

coverage-dimension behavior approaches a plateau as the
number of decades of imposed scaling is increased. If, on the
other hand, with a coverage dimension function,
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( I
0, )\<bN—l’
N—-1 i
a | |
D;(N)=¢ i=xkr1\b %<)\<B?;, (39
N=T | T b
a A )
= +—> a k=0,...N—1,
iZkr1\b/  1oi=0
\ L o<\

Such objects have discrete-scale PDFs as opposed to thg@ns of nonmonotonicity are evident. The coverage dimen-
continuous-scale PDFs studied above. This scale PDF is nogsion seems to develop a plateau with superimposed oscilla-
zero at scales generated by a power-law with a single chations, at a value near th®,=log2/log3=0.63 for the
acteristic scalé, and parametelp. The probability densities inhomogeneous Cantor set in the small-scale limit, and is
are delta functions at these scales, generated from anothieidicated as a dashed line.

power-law with parametea. The parametera andb, and the An example of a concentration field(x,y), measured in
scalel, can be chosen to study several stochastic variations liquid-phase turbulent jet is depicted in Fig. 10. The image
of the Cantor set. As an exampla=2 andb=3 would is a two-dimensional spatial slice recorded at a far-field lo-
correspond to the stochastic version of the classical fractadation ofz/dy=275 nozzle-exit diameters and in the similar-
middle-third Cantor set. Ten generations of this set result inity plane, i.e., normal to the jet axis, employing laser-induced
a coverage dimension shown in Fig.(8@ght). Multiple re-

10F
1.0[ .
* 0.8f .
08k . I
I 0.6 L -
0.6 n = [
= [ =)
o |
0.4k .
0.2+ .
0.0 ] 1 2

T T T T

D:(M)

D,(M)

-3 -2 —1 0 1 2 3
(b) l0gsg (A/1m)

FIG. 9. (a) Coverage dimension for two-scale PDF, and results
FIG. 8. (a) Coverage dimension for a continuous power-law from four Monte Carlo simulations with/l ;= 3000.(b) Coverage
PDF of spacing scales with=1, cf. table entry 1.7(b) Coverage dimension for a discrete power-law PDF w2 andb=3, cor-
dimension,D;(\), for a continuous power-law PDF of spacing responding to a stochastic version of the classical fractal Cantor set,
scales withv=2, cf. table entry 1.8. for ten generations.

(b) i0g16 (A/ 1)
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FIG. 10. Two-dimensional spatial slice of the concentration field in the similarity plane and far field of a liquid-phase turbulent jet
recorded at Re 10* using laser-induced fluorescence and digital-imaging techniques. Grey levels, from black to white, denote increasing
values of the jet-fluid concentration.

fluorescence and high-resolution digital-imaging techniquesind calibrated digital-image data. The level sets were com-
[29,45,48. The jet Reynolds number, R©.0x 10°, is near  puted from the scalar field using the B-spline function rep-
the regime of fully-developed turbulent flow. The Schmidt resentation evaluated at a sub-pixel resolution g#. Cov-
number of the scalar species, aqueous disodium fluoresceierage statistics of the 2D level sets were computed using a
is Sc~10°. Gray levels, from black to white, denote increas-2D box-counting algorithm in which &,-sized bounding
ing values of the jet-fluid concentration. Of particular interestbox was identified and partitioned into contiguaudoxes,
in the context of quantifying mixing is the structure of to compute the coverage fraction of the number of boxes that
mixed-fluid interfaces or level sets of concentration. Figurecover the level set, as a function of scale. Six images at a
11 depicts a scalar level set extracted from the two-Reynolds number of Re9.0x 10° were processed to com-
dimensional image data of Fig. 10. The scalar threshold corpute ensemble-averaged coverage statistics. Linear, one-
responds to the peak of the jet-fluid concentration PDF atlimensional transects were also constructed that pass
this Re. The examination of scaling or fractal behavior of thethrough the level sets. Examples are shown in Fig. 12 which
fluid interfaces is facilitated in the present images becausdepicts 1D transects through the two-dimensional level-set
these measurements were conducted in the similarity plangata of Fig. 11. The transects were generated via a Monte
and at a particular distance downstreamidg=275) to  Carlo Poisson algorithm to produce random linear cuts that
avoid effects of the downstream variation of scales in thidie within the bounding box of the level set as indicated in
flow. The Pelet number, PeRe Se- 10/, is relevant for an  Fig. 12. For the 1D coverage statistics,’ ifansects were
investigation of scaling properties of fluid interfaces whichconstructed for each level set and the level-crossing locations
have been proposed in the high-Pe regime. were box-counted, or tile-counted, using a 1D coverage pro-
The two-dimensional scalar field was represented in termsedure[47].
of bilinear B-spline functions fitted through the normalized High- and low-dimensional transects of complex multidi-
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FIG. 11. Level set of the concentration field derived from the image data of Fig. 10. The scalar threshold corresponds to the peak of the
jet-fluid concentration PDF at RelQ*.

mensional structures may be expected to have scale distribu-|/,
tions that are similar, at least qualitatively. For surfaces in
3D space, for example, 2D planar transects consist of lines or
curves with a scale distribution which may be similar to the
full scale distribution; 1D linear transects consist of points
whose statistics may be expected to reflect the higher- | 4
dimensional behavior. Figures 13 and 14 show the ensemble- &}
averaged coverage fractiors4(\), coverage dimension, /
Dy4(N), and LEB-scale PDF[fy4(\), for both the two-
dimensional scalar level sets and the corresponding one-
dimensional transects, derived from the jet measurements at
Re=9x10°. The smallest diffusion scale of the concentra-
tion field is estimated to be lgg A p/5p) = — 3.0, on the jet
axis. The spatial scale\, is normalized by the size of the
2D-transect bounding box,,. For both the 2D and 1D data,
the coverage fraction tends to unity at large scales, as ex-
pected. At scales smaller thas,, however, the measure-
ments show that

Fo(N)>F1(N), (40 FIG. 12. One-dimensional spatial transects through the level set
depicted in Fig. 11. The linear transects were generated by a Pois-
i.e., the higher-dimensionality transects exhibit a larger covson process. The bounding box is also indicated.
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coverage dimensiofh) of spatial two-dimensionglsolid line) and ) ) o
one-dimensionaldashed lingjet transects. FIG. 14. () LEB-scale PDF for two-dimensiondkolid line)

and one-dimensiondtlashed lingtransects(b) Dependence of the

. L . mean LEB scalécrossesand the normalized inverse-area-volume-
erage fraction. The coverage fraction is the geometric prob-

= . ratio scale(squareson the transect dimension.
ability that a randomly-placed box contains a part of the e(squares
g_bject ?‘”d ItTIS will tbe’Tlr? general, Iardger for_ thef h'?ger.' he relative coverage dimensions, for the 1D and 2D data,
t|menS|ton_a r:ansep Sl':. fmcovg(ag(al ttlnzjens?hn orl t'e ] gree at the smallest and largest scales, as expected. At in-
ransects 1S shown in F1g. and IS plotted as the relalive o e giate scales, however, the measurements show that
coverage dimensiom) 4(\) —d;, whered, is the topological

dimension. For the 2D as well as 1D level sets, the coverage D,(A\)—1>D;()\) (42)
dimension increases smoothly with scale, This quantity

ranges from zero, at the small scales, to unity, at the largge | the higher-dimensionality transects, in this case, are
scales, found to be associated with a larger relative coverage dimen-
sion[47]. For objects that exhibit self-similar fractal scaling,
0<Dy(N) —di=1, (41)  an assumption is typically made that dimensions derived
from transects should satisty,,,=Dy+1. This assump-
for the fluid-interface data. The lower limit will be O regard- tion is related to a theorem which applies to Hausdorff di-
less of the topological dimensiod,, or embedding dimen- mensions of nearly all transects through a fractal oljjé8l,
sion,d. The upper limit will be 1 for points in 1D, curves in where “nearly all” means except for a set of transects of
2D, surfaces in 3D, etc. Such objects can be expected to ariggobability measure zero. The present data correspond to a
in the study of mixed-fluid interfaces in turbulent flows. finite Reynolds number and the level sets cannot be consid-
Higher upper limits of the relative coverage dimension areered as fractal, constant-dimension objects, which is one of
possible for curves embedded in 3D space, e.g., vortex lineshe assumptions of this theorem. Also, the coverage dimen-
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sions computed for the jet data are not Hausdorff dimensionkarge structure of the jet can be discerned. At the small
but capacity, or Kolmogorov, dimensions for which there isscales, the observed behavior can be modeled in terms of a
no equivalent theorem. Nevertheless, the present conclusidagnormal distribution of scales,

that higher-dimensional box analysis captures more structure

than ensemble-averaged lower-dimensional box analysis is fo(N)cerfd {In(N ) o+ al2}1\2]/21,,,  (45)
qualitatively consistent with the behavior of spiral structures

[15] and is in agreement with other spatial and temporal 1Ij"’ith 10g1o(l/ 9p) = —1.5 an(_jazl.z, as ﬁtt?d to the inner
measurements of interfaces in j48]. This behavior can be scaleq45]. Lognormal spacing-scale statistics have been re-

expected for fluid interfaces in other turbulent flof@s]. ported at Reynolds numbers as high ag-RBO0O in plumes

The coverage statistics of the present 1D transects are fliSPersing in the atmospheric surface layet]. Such statis-
agreement with the LEB-scale PDF for the present measurd'cS may be anticipated in various fragmentation/growth pro-
ments is shown in Fig. 1d). The data indicate that the prob- cesses describable in terms of stochastic multiplicative se-

ability density of a LEB scale increases continuously withduences[50], and appear to be good candidates for
decreasing scale, tending to a constanhas0. While the ~duantifying the geometry of the Richardson-Kolmogorov

jet is not statistically homogeneous spatialfy(\) retains _cascade in turbulence, including both the break-up and pair-
ing of vortical structures.

its meaning. For example, for the two-dimensional level sets, A sianifi ion. fund I d cally. i
f,(\) it is the PDF of the size of LEBs, randomly placed, A Significant question, fundamentally and practically, is
whether fluid interfaces become more folded, more wrinkled,

interior to the §,-box. The data indicate thaff,(A—0) L .
>f,(\—0), i.e., the higher-dimensional transects are asso" both, as the Reynolds number is increased. Previous work

ciated with a higher area-volume ratio, as anticipdt26l. has :)ndlc_:ated that thbel cor?cenlflratlonbfleld In hlgh-ll?er)]/nolds-
The present data indicate that number incompressible shear flows becomes nearly homoge-

neous, corresponding to well-mixed fluid, where a large vor-
tical structure is presen2,51,44,33,3b One may expect,

Fa(M)>Ta(A) - for A<, (43 therefore, that the relative degree of folding of the interfaces
- may decrease with increasing Reynolds number reflecting
while L
the presence of the large structure. Curvature statistics of
f00<fi(0)  for A, (44) fluid interfaces[52—59 may be useful in this context to

quantify the distribution of folds and wrinkles. In the present
~ work, the scale-distributions framework leads naturally to
where\ appears as a crossover scale. In other words, abo\g,o quantitative measures of folding and wrinkling of the
this scale, it is harder to find large-scale empty space, Gjyterfaces. Based on the LEB scale distributibf)), and its
regions not visited by the interface, for the 2D transectsphysica| meaning as the PDF of the size of the largest flow

Below the crossover scale, it is easier to find small-scalgegion not containing a part of the interface, let us define a
empty regions for the 2D transects. The apparent crossovefimensionless measure of folding as

scale in the LEB-scale PDF behavior is partly a consequence
of the fact that the LEB-scale PDF is normalized. The mean s -1
LEB scale is larger for the lower-dimensional 1D transects, ]::( L*f()\)dh> '
as shown in Fig. 1é). The inverse area-volume scale mea-
sure is also Iarger in 1D, indicating a lower area-VOlUmEand a dimensionless measure of Wrink”ng as
estimate, as expectdd9]. Since the LEB-scale PDF is a
scale-dependent area-volume measure, the data show that fo
1D-transect estimates of the area-volume ratio are underesti- W= f - A df(h), (47)
mates at smaller scales and overestimates at larger scales,
when compared to 2D transect measures. The jet-transeathere f* =f(\*), fo=Ilim,_of(\)=1/\,,. The scale)\*,
behavior is similar, in some respects, to Poisson-planés a reference scale such that interfacial features of size
transects. A notable difference is that the mean LEB scale is-A* may be considered as folds, and features of aize
identical to the inverse area-volume ratio scale, for the Pois<A* may be considered as wrinkles. In turbulent shear
son model, whilex,,/\,~10 for these jet data, cf. Fig. 4. flows, the interfacial folds can be viewed as features that are
Data from transects of different dimensionality can be com-directly related to and generated by the large-scale vortical
pared in terms of the inverse of the point density in 1D,structures[56]. The interfacial wrinkles may be viewed as
perimeter-area ratio in 2D, and area-volume ratio in 3D, suclthe result of Richardson-Kolmogorov cascades to higher
as the scale.,. These considerations are especially impor-wave numbers, i.e., large eddies breaking up into smaller
tant in the context of phenomena for which 3D measureeddies, or because of internal small-scale instabilities of the
ments are not readily possible, e.g., rock-fracture ofdarge structures and associated three-dimensional vortex
earthquake-fault networks. stretching[56]. Figure 15 is a schematic of four scenaria of
In turbulent flows, in general, the scale-dependence of théluid interfaces with varying degrees of folding and wrin-
coverage dimension and the corresponding LEB-scale PDKling. Scenario(b) shows a schematic of an interface with
can be expected to reflect both the large-scale organizedw folding number but high wrinkling number, which can
structure of the particular flow and generic small-scale charbe expected to be relevant for high-Reynolds-number mixing
acteristics. For example, in the coverage-dimension and incompressible flows, because of the presence of large
scale-distribution behavior of the jet, exhibited in Figs. 13vortical structures. Mixing in compressible flows, in which it
and 14, respectively, a signature of the three-dimensionas found that vortical motions are not as dynamically impor-

(46)
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IV. CONCLUSIONS

The proposed framework can be used to quantify the dis-
tribution of scales spanned by complex surfaces such as fluid
interfaces in turbulent flows. The framework involves a mul-
tidimensional measure of scale and, therefore, can be used to
quantify the four-dimensional space-time evolution of fluid
interfaces. Other level sets, such as vorticity- or velocity-
magnitude isosurfaces, can also be analyzed and modeled
with this framework. The proposed measure of scale distri-
butions can also be used to identify the geometric-scale ana-
logs of classical turbulence scales such as the Kolmogorov,

{c) é

Taylor, or Batchelor scales. The inverse of the area-volume
ratio of the level sets can be computed, or modeled, as the
inverse of the small-scale limit of the LEB-scale PDF, and is
important to quantify the mixing efficiency in the case of
mixed-fluid interfaces. Such scales are useful in analyzing
and comparing Reynolds-number and Schmidt-number ef-
fects on mixing in different turbulent flows.

The dimensionless folding and wrinkling numbers are ex-
pected to be useful for quantifying the contributions of the
large-scale and small-scale turbulent flow structure to the

) interfacial geometry. These folding and wrinkling measures
can be used to compare quantitatively interfaces generated
FIG. 15. Schematic of fluid interfaces with varying degrees ofby turbulent flows, to quantify Reynolds number and
folding and wrinkling, which can be quantified by a folding num- Schmidt number effects, to assess the performance of pro-
ber, 7, and a wrinkling numbenV. (a) Low F and lowW. (b) Low  posed flow-control techniques on mixing enhancement or re-
F and highW. (c) High 7 and lowW. (d) High 7 and highW.  duction, and to quantify the contributions of the large- and
Scenario(b) may be expected to be relevant for high-Reynolds-small-scale interfacial geometry to laser beam propagation,
number mixing in incompressible flows, in those flow regions \yandering, and attenuation in optically-active gases, for ex-
where large vortical structures are present. Scer@jiovould be  gmple. Also, these measures can be expected to be helpful to
more relevant for compressible turbulent mixing. quantify the relative degree of organization of the large
o ) ) . structure in a particular realization of the flow and to evalu-
tant for mixing as in the incompressible case, may be exate the extent to which flow-control schemes can be used to
pected to be characterized more accurately by scetdyio organize the large structure of the turbulence and thus to

which shows a schematic of an interface with high foldingenaple an efficient study of the properties of the large struc-
number and high wrinkling number. For the reference scaleyres.

\*, a good choice would be the Liepmann scalg, which

is the smallest scale that can be generated directly from the
outer §-size scale of the flow, e.g\, /6~Re 2 for the
laminar boundary-layer thickness that can be generated by a
single 5-sized sweep across the turbulent reg[@h This This research is part of a larger effort to investigate tur-
scale is not expected to depend on the Schmidt number sindmilent flows and mixing, and is supported by the National
large-scale vortical structure is independent of scalar diffuScience Foundation and the U.S. Air Force Office of Scien-
sivity. The Liepmann scale is closely related to the Taylortific Research. Useful discussions with C. L. Bond, M. C.
scale, in terms of the Reynolds-number dependence, an@ross, J. C. Catrakis, P. E. Dimotakis, M. Gharib, J. W.
marks the separation between the range of scales that artearn, H. G. Hornung, J. C. R. Hunt, A. Leonard, H. W.
generated directly from outer scales of the flow and the rangkeiepmann, M. G. Mungal, D. I. Pullin, A. Roshko, P. G.
of scales that correspond to outer-scale-independent dynarSaffman, E. Titi, and E. Villermaux are gratefully acknowl-
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