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Distribution of scales in turbulence

Haris J. Catrakis*
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~Received 9 June 1999; revised manuscript received 3 April 2000!

The physical structure of convoluted surfaces and fluid interfaces in turbulence is quantified by a distribution
of geometric scales. A scale measure suitable for multidimensional surfaces and a one-to-one correspondence
between the scale distribution and the coverage dimension are used to analyze the scale dependence of the
interfacial geometry. Application to concentration interfaces in a turbulent mixing flow indicates that the
statistical laws exhibited at the small scales can be quantified and modeled. Based on the scale distribution,
dimensionless measures of folding and wrinkling of the fluid interfaces are introduced which are useful to
quantify the contributions of the large-scale and small-scale turbulent flow structure to the interfacial geometry.

PACS number~s!: 47.27.Ak, 02.50.2r, 47.53.1n, 47.27.Qb
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I. INTRODUCTION

In turbulence and other nonlinear complex phenome
there is a challenge of bridging the knowledge that is beg
ning to be acquired with direct numerical simulations a
careful experiments at low and moderate values of the n
linearity parameter, or Reynolds number in the case of
bulence, to what needs to be known at large values of
nonlinearity parameter, or large Reynolds numbers. In
context of velocity- and vorticity-field statistics in turbu
lence, this question has been asked traditionally in term
spectra or structure functions, with the Kolmogorov pow
law as a good example of how one may use a power-law
that case, to bridge length scales@1–5#. In the context of
turbulent mixing, which is important practically, a cruci
feature is the geometry of the fluid interfaces. How does
extrapolate knowledge of the structure of interfaces, or le
sets, to high Reynolds numbers? What tools must be de
oped to address this issue? How should they be applied

Turbulence-generated fluid interfaces are observed to
highly convoluted over a large range of scales, e.g., the
terface~s! between two or more fluids mixed by high
Reynolds-number shear layers or jets@6,7#. For incompress-
ible flow and mixing of a simple fluid, for example, th
velocity field, u(x,t), and concentration field,c(x,t), are
governed by the Navier-Stokes and scalar evolution eq
tions,

] tu1u•“u52“p1
1

Re
“

2u, ~1!

] tc1u•“c5
1

Re Sc
“

2c, ~2!

in dimensionless form, constrained by mass conservat
“•u50, and appropriate initial and boundary, or inflow a
outflow, conditions. Turbulence is flow at high Reynol
numbers and, in three dimensions, is associated with non
ear vortex stretching and near-singular behavior of the ve
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ity gradients at large Re, resulting in complex vortical stru
ture. If the Schmidt number is also large, i.e., for large valu
of the Péclet number Pe[Re Sc, fluid interfaces may also b
expected to exhibit convoluted structure, such as for the c
centration isosurfaces or level sets,

c~x,t !5const5c* , ~3!

wherec* is a scalar threshold corresponding physically to
particular local degree of mixing, or composition, attained
the fluid. The resulting physical structure of the interfac
surfaces must be quantified in order to understand, predic
compensate for a variety of phenomena that rely on mole
lar diffusion, chemical reactions, or electromagnetic/acou
wave propagation across fluid interfaces, e.g., mixing, co
bustion, aerooptics, or aeroacoustics. The area-volume
of mixed-fluid interfaces, in particular, is crucial to quanti
the total amount of mixing, or mixing efficiency of the flow
Classically, the statistical properties of turbulence-genera
fields have been analyzed typically in Fourier space, rat
than physical space, and, in particular, in terms of pow
spectra of derived flow measures. Descriptions based onl
power spectra, however, do not retain any phase informa
from the Fourier transforms and, in general, cannot uniqu
provide information on the physical structure of level sets
isosurfaces. Quantifying and predicting length, area, or v
ume properties of isosurfaces necessitates the develop
of a physical-space geometric framework. Beyond a m
mum Reynolds number of Re;104, turbulent flows may be
expected to be fully-developed and associated with a hos
similarity properties@7#. For large values of the Pe´clet num-
ber, there have been proposals of geometric scaling or fra
behavior of fluid interfaces such as concentration isosurfa
or level sets. Scaling behavior of fluid interfaces would ha
important consequences fundamentally and practic
@8–10,6,11#.

In general, despite the simplicity of the governing law
many phenomena exhibit complexity@12,13#. This can be
traced to the breaking of symmetry properties of the eq
tions by imposed initial or boundary conditions, the develo
ment of instabilities, and subsequent nonlinear pattern
mation and evolution away from equilibrium leading
564 ©2000 The American Physical Society
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PRE 62 565DISTRIBUTION OF SCALES IN TURBULENCE
structures and dynamics that span a wide range of space
scales. Far from equilibrium, the lost symmetry can be
stored resulting in statistical symmetry properties which m
often be understood in terms of similarity and scaling ar
ments. For a variety of phenomena, including turbulen
there have been suggestions and reports of power-law sc
of surfaces or interfaces@8,14,10,15#. Such conjectures an
findings are cast in terms of a constant fractal dimens
identified as the scaling exponent of the assumed/obse
power law. Fractal geometry is able to quantify structures
a higher level of complexity than Euclidean geomet
Whereas Euclidean objects have structure on a single, l
scale only, fractal objects exhibit the same structure on m
different scales and are characterized by power laws@16#. A
higher level of complexity yet can be expected: differe
structures, or structures of different complexity, may app
at different scales with more general, non-power-law sta
tics, e.g., lognormal, Poisson, etc. These considerations
gest a three-level hierarchy of complexity.

Level 1: complexity only at single scale—Euclidean ge-
ometry.

Level 2: complexity same at all scales—power-law or
fractal geometry.

Level 3: complexity may vary with scale—scale-
dependent geometry.

Classical examples of power-law scaling laws are isom
ric or proportionate scaling relations for the area,A, or vol-
ume, V, of Euclidean objects such as disks or spheres,
which A;L2 and V;L3 in terms of a characteristic lengt
scale, L. Nonisometric, allometric, or disproportiona
power-law scaling relations are also possible. Indeed, Ga
@17# pointed out that the bones of large animals must
scaled out of proportion to their linear dimensions in order
support the animal’s weight, e.g.,R;L1.5, with a dimen-
sional prefactor, whereR is the bone diameter andL the
length of the bone. Such fractional-power or fractal laws
linear in Richardson’s log-log coverage-scale plot@18#, with
a negative slope given by the power-law scaling exponen
fractal dimension. Fractal geometry is a manifestation
self-similarity, both terms coined by Mandelbrot@14#. For
such objects, coverage statistics are described by power
with a constant coverage dimension,Dd , i.e.,

Nd~l!;l2Dd or
dNd~l!

Nd~l!
52Dd

dl

l
, ~4!

where the latter form is dimensionless andNd(l) is the cov-
erage function at a scalel in d dimensions. The coverage
Nd(l), counts the number of nonoverlapping boxes of sizl
needed to cover the object under study, out of al-partition
of the d-dimensional embedding space. The scalel may re-
fer to a temporal, spatial, or space-time scale.

In various phenomena, however, the coverage dimens
Dd , has been observed to be a smooth function of scale,
Dd(l). In such cases, a scale-dependent coverage dimen
can still be identified as a local logarithmic derivative of t
coverage function,

Dd~l![2
dNd~l!/Nd~l!

dl/l
52

d logNd~l!

d logl
, ~5!
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and the fractal case, i.e.,Dd(l)5const, is then a specia
case. IfDd(l)Þconst, however, as may be anticipated to
the case in general, there will be no power-law-like behav
of the coverage function, i.e.,Nd(l);” l2Dd(l). While the
coverage dimension, at a scalel, can still be identified as the
fractional decrease in coverage,2dNd /Nd , per unit frac-
tional increase in scale,dl/l, it implies the more general
nonpower law,

Nd~l!5expH E
l

db
Dd~l8!

dl8

l8
J ~6!

@19# wheredb is the largest scale of the object. For data
finite extent,db can be computed as the size of the bound
box andNd(db)51 by definition. The physical interpretatio
of the general behavior expressed in Eq.~6! is that the com-
plexity of structures across a wide range of scales can c
tribute to the coverage behavior at any onel scale.

Evidence of coverage dimensions that are smooth fu
tions of scale has been reported, for example, for Brown
motion @19,20#, coastlines@21#, topographic surfaces@22#,
fracture-network surveys@23#, lung tissue of prematurely
born rabbits@24#, solar granulation@25#, and the galaxy dis-
tribution in the universe@26#. Various terms have been em
ployed to denote such non-power-law behavior: differen
fractal, superfractal, semi-fractal, etc. An analytical expr
sion for the coverage-dimension function,Dd(l), has also
been offered for 1D Brownian motion@19# and results in a
dimension that increases continuously with scale from un
at small scales, to 2, at large scales. This expression
found to compare well with measurements of Brownian m
tion @20#. For the perimeter of lung tissues of premature
born rabbits, a coverage dimension expression wh
smoothly increases with scale was also proposed@24#. A
suggestion of corrections to power-law scaling has also b
made to describe objects that do not exhibit exact po
laws in terms of exponential and logarithmic dimensions a
a metadimension, in addition to the fractal dimension@27#.
The three proposed dimensions appear as multiplicative
rections, however, and would result in a quantity which
longer has the meaning of a local dimension, i.e., of a lo
scale-logarithmic derivative of the coverage. Models of no
power-law behavior have also been proposed in terms
scale-dependent variants of fractal geometric constructio
Examples are scale-dependent Cantor dust@23# and scale-
dependent Koch islands@21#. The analysis of such model
has been conducted on a case-by-case basis.

A framework will be described and demonstrated bel
which can quantify the scale dependence of the geometr
convoluted surfaces and interfaces@28,29#. The proposed
framework establishes a fundamental, one-to-one corres
dence between coverage statistics and the underlying d
bution of scales, in the form of a transform pair, and can
used to quantify multidimensional geometries. There
other means to analyze multiscale phenomena, e.g., in te
of multifractals or wavelets. Of particular interest here is t
development of a framework based on a particular meas
of scale that will permit a direct connection to coverage s
tistics of fluid interfaces and hence space-filling propert
such as the area-volume ratio. In addition to the pract
interest in such quantities in the context of mixing, there i
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566 PRE 62HARIS J. CATRAKIS
fundamental interest concerned with the small-scale ge
etry of the fluid interfaces and the possible developmen
singularities, or near-singularities, in the vorticity field
unsteady spatially-three-dimensional high-Reynolds-num
flows, associated with local growth of the velocity by no
linear vortex stretching. Such questions are important ph
cally because they may shed light on the nature of region
high dissipation of energy and large rate of molecular m
ing, and because they may lead to developments of cano
or universal models of small-scale structure@30#.

II. DISTRIBUTION OF SCALES

There are numerous observations of phenomena wh
structure and dynamics span a wide range of space-
scales@14,13#. How are such scales distributed? What is
useful measure of scale for this purpose? In the contex
fluid interfaces generated by high-Reynolds-number tur
lent flows, such as concentration interfaces, density iso
faces, or vortical interfaces, the surfaces are unsteady
three-dimensional spatially, in general. It appears that fl
interfaces can be highly convoluted over a wide range
scales but may also exhibit simple, organized, large-s
features directly deducible from the large structures@31–35#.
A quantitative description of the interfacial geometry
needed, ideally one that would aid in discerning the con
butions of the large-scale and small-scale turbulent fl
structure to the geometric features of the interface. T
framework described below offers a means to quantify
distribution, or probability density function~PDF!, of scales
for convoluted surfaces such as fluid interfaces in turbulen
A quantitative measure of scale is necessary for this purp
While there are different ways to quantify scales and th
distributions, we would like to make a connection to cov
age statistics and dimensions, and, thereby, to extend fra
geometry and quantify the scale-dependence of length, a
or volume measures. In 1D space, we will be concerned,
example, with level sets consisting of points that can arise
crossings of a certain threshold of a 1D physical signa
space or time. These crossings, in turn, may be viewed
linear transects of corresponding surfaces or interface
higher-dimensional space. The notion of coverage dimen
remains useful in scale-dependent geometries as it provid
quantitative measure of the geometric complexity at a gi
scale.

Allowing for a coverage dimension that may vary co
tinuously with scale, we proceed to investigate the con
quences of a scale-dependent coverage-dimension func
Dd(l). We will consider the coverage of a level set, a
though the concepts apply to other geometric objects
practice, coverage statistics of a level set are computed
partitioning/box-counting algorithm: adb-sized bounding
box containing the level set is first partitioned intoNd,tot(l)
nonoverlapping, contiguousl-sized tiles in 1D, squares o
rectangles in 2D, cubes or parallelepipeds in 3D, etc.,
then the numberNd(l) of suchl elements that cover th
level set is counted. By definition, 0<Nd(l)<Nd,tot(l). This
naturally leads to the dimensionless coverage fraction,

Fd~l![
Nd~l!

Nd,tot(l)
5S l

db
D d

Nd~l!

5expH 2E
l

db
@d2Dd~l8!#

dl8

l8
J ~7!
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@36#, such that 0<Fd(l)<1 with Fd(db)51. The coverage
fraction measures the degree to which the object fills spa
We can consider the casedb5` without loss of generality.
The proviso ‘‘interior to the bounding box’’ will be implied
for the finite-db case. The ensemble-averaged coverage f
tion, denoted in the following also asFd(l), can be identi-
fied as the geometric probability that a randomly-placedl
box, interior to the bounding box, contains part of the s
i.e.,

Fd~l!5pc~l!512pe~l!, ~8!

wherepc(l) is the probability that a randomly-placedl box
contains at least some part of the level set, andpe(l) is the
probability that a randomly-placedl-box does not contain
any part of the level set. With this interpretation of the co
erage fraction as a geometric probability, the connection
tween coverage statistics and scale distributions can
made.

In one-dimensional space, the coverage dimension
level sets consisting of points can be connected to the p
ability density function~PDF! of the ‘‘gaps’’ between the
successive points, i.e., the point spacing. An example o
point set is the set of level crossings of a particular thresh
in a scalar or velocity-component signal in a turbulent flo
Consider a stochastic, statistically-homogeneous, point
cess, in space or time, with a distribution of spacing sca
i.e., interval-lengths between successive events of the
cess, described by a PDF,p1( l ), wherel>0 denotes a spac
ing scale. From dimensional and geometric consideratio
the fraction of length spanned by anl scale will bem1( l )
} l p1( l ). This can be viewed also as the geometric weig
ing of the scales. The probability density that a random
cation, with uniform measure on the real line, lies in anl
spacing can be written, therefore, as

m1~ l !5
l p1~ l !

l m
, where l m[E

0

`

l p1~ l !dl, ~9!

and l m can be interpreted as the mean spacing scale.
geometric probability that al tile, randomly located on the
real line with uniform measure, is ‘‘empty,’’ i.e., contains n
points, can be written as

pe~l!5E
0

`

ge~lu l !m1~ l !dl

5E
l

`S 12
l

l Dm1~ l !dl

5E
l

`S l 2l

l m
D p1~ l !dl, ~10!

wherege(lu l ) is the conditional probability that a randomly
placedl tile contains no transitions, given that it lies in anl
spacing; cf. Fig. 1. The probability that al tile lies in an l
spacing is given by the geometric weighting of the scal
m1( l ), cf. Eq. ~9!. By a l tile lying in an l spacing we mean
that a reference point of the tile, e.g., the left end point of
tile, lies in an l spacing. The coverage fraction can be e
pressed in terms of the spacing-scale PDF, as
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PRE 62 567DISTRIBUTION OF SCALES IN TURBULENCE
F1~l!5
1

l m
E

0

lE
l8

`

p1~ l !dl dl8, ~11!

which can be interpreted geometrically as the fraction
length spanned by spacing scales withl ,l and a contribu-
tion from spacing scales withl .l. The limiting behavior of
the coverage fraction, at small scales, is,F1(l);l/ l m
→0, as l→0, i.e., the mean spacing scale,l m, alone,
determines the small-l scaling. At the large scales orl
→`, F1(l)→1, as expected. The coverage dimension,
Eq. ~5!, can be expressed too in terms of the PDF of spac
scales,

D1~l!512

lE
l

`

p1~ l !dl

E
0

lE
l8

`

p1~ l !dl dl8

, ~12!

which may be interpreted in terms of the fraction of leng
spanned by the spacing scales. This implies that the sm
scale and large-scale limiting behavior of the coverage
mension will be, respectively,D1(l→0)→0 and D1(l
→`)→1, as required for the coverage of 1D point sets. T
relation expressed in Eq.~12! can be viewed as a forwar
scale-distributions transform, connectingp1( l ) to D1(l). It
can be used, therefore, to transform scale distributions
their corresponding coverage dimensions. The inverse sc
distributions transform, connecting the coverage-dimens
function to its corresponding PDF of spacing scales can
be obtained,

p1~ l !5
l m

l 2 H D1~ l !@12D1~ l !#1 l
dD1~ l !

dl J
3expH 2E

l

`

@12D1~ l 8!#
dl8

l 8
J , ~13!

where the mean scale,l m, can be expressed as

l m5 lim
l→0

H l expF E
l

`

@12D1~ l 8!#
dl8

l 8
G J . ~14!

An equivalent relation was obtained, by a different deriv
tion, for zero crossings of stochastic Gaussian functions@37#.
Extensive related results and properties have been der
before for the special case of Poisson statistics@38,39#, but
the present treatment is neither restricted to nor relies on
notion of Poisson behavior. The relations expressed in E
~12! and ~13! constitute the general 1D scale-distributio
transform pair. An alternative measure of geometric scale

FIG. 1. Schematic of interfacial crossings along a linear trans
indicating a spacing scale,l, and a coverage scale,l.
f
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1D, that can also be connected to coverage statistics, is
largest-empty-tile~LET! scale. This scale measure will prov
useful in extending the scale-distributions framework
higher dimensions, further below. The LET scale is defin
as the size of the largest tile, centered at a random loca
that is ‘‘empty,’’ i.e., does not contain any part or point
the set. It can be viewed as a first-waiting time scale, in
context of temporal point processes. The PDF of this sc
f 1(l), can also be interpreted as the probability~density!
that a random point is a distancel/2 away from the neares
element of the point set. Equivalently,f 1(l) is proportional
to the number fraction of intervals of size greater thanl. If
p1( l ) is finite, i.e., if the spacing-scale distribution exhibi
no singularities, then it can be shown that

f 1~l!5
1

l m
E

l

`

p1~ l !dl5
dF1~l!

dl
, ~15!

which is relevant to bounded, continuous distributions su
as lognormal, power-law, Poisson, etc. These considerat
result in the LET-scale distribution transform pair,

D1~l!512
l f 1~l!

E
0

l

f 1~l8!dl8

~16!

and

f 1~l!5
12D1~l!

l
expH 2E

l

`

@12D1~l8!#
dl8

l8
J . ~17!

In the 1D framework, the spacing scale, e.g., distance
tween successive level crossings, is a useful scale mea
which can be connected to coverage statistics.
d-dimensional space, however, the spacing scale does
generalize naturally. A different scale measure is need
therefore. The significance of the LET scale is that it can
generalized naturally to higher dimensions.

In d-dimensional space, the coverage fraction,Fd(l), will
in general be a function of the scale vector,l
[(l1 ,l2 , . . . ,ld). For example, for 4D space-time dat
l5(lx ,ly ,lz ,l t). Under certain symmetry conditions, in
dicated by the physical nature of the problem, it will b
useful to consider the dependence of the coverage fractio
the scalar scale,l, defined as a geometric mean,l
5(l1l2 . . . ld)1/d. For the case of round turbulent jets, fo
example, slices of the concentration field normal to the
axis will be statistically axisymmetric so that it will be usef
to choosel5(lxly)

1/2, where thelx and ly scales in the
box-counting and partitioning process are pegged to
bounding-box scales,dx and dy . The coverage fraction
Fd(l), can be identified as the geometric probability tha
randomly-placedl box covers part ofS, whereS denotes the
set under study, as noted in the discussion of Eq.~8!, The set
S could consist of points, lines, surfaces, etc., embedde
thed-dimensional space. The coverage fraction can be in
preted as a cumulative distribution function of a particu
measure of scale. The differential coverage fraction can
associated with a PDF,f d(l), where

ct
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568 PRE 62HARIS J. CATRAKIS
f d~l![
dFd~l!

dl
. ~18!

The PDF,f d(l), can be interpreted geometrically as the PD
of a particular measure of scale: thelargest-empty-box~LEB!
scale,l, defined as the size of the largest box random
placed, that is empty, i.e., covers no part ofS ~see Fig. 2!.
Equivalently, the LEB scalel is a measure of~twice! the
distance from a pointP to the nearest element ofS. The
LEB-scale distribution~PDF!, f d(l), satisfies the required
normalization condition over the range of spatial scales,
*0

` f d(l)dl5Fd(`)2Fd(0)51. The coverage dimension
Dd(l), can be expressed, therefore, in terms of the distri
tion of LEB scales,f d(l), i.e.,

Dd~l!5d2
l f d~l!

E
0

l

f d~l8!dl8

, ~19!

which is invertible and yields the LEB-scale PDF from t
coverage dimension,Dd(l), directly, i.e.,

f d~l!5
d2Dd~l!

l
expH 2E

l

`

@d2Dd~l8!#
dl8

l8
J . ~20!

These relations constitute thed-dimensional scale-
distribution transform pair. The above framework is not
stricted to statistically homogeneous geometries. In gene
the probability of covering the set with al box, interior to
the db box, will be a function of position within thedb box.
For a set contained in ad-dimensional bounding box of siz
db , the coverage fraction,Fd(l), can be identified as the
geometric probability that a randomly-placedl box, interior
to the outerdb box, covers part ofS. For spatially inhomo-
geneous statistics, the functionFd(l) represents the prob
ability of coverage for al tile placed in thedb box without
regard to its location.

FIG. 2. Schematic of a fluid interface and a largest empty b
~LEB! of sizel. The LEB scales are the sizes of the largest poss
boxes, centered at random locations, that do not contain any pa
the interface.
y

.,

-

-
al,

An additional useful interpretation of the LEB-scale PD
f d(l), can be made as a measure of area/volume proper
From the definition of a LEB scale, we can expect that
set of points at which the size of the LEB scale isl will have
a measure associated to them~length, area, etc.! determined
by f d(l). This set of points will be at a constant distanc
l/2, away from the level set. For example, for the covera
of a level-set contour in 2D or isosurface in 3D, this set
points would be curves or surfaces, respectively, equidis
to the level set and spaced by a distance given byl/2. This is
illustrated in Fig. 3 which shows that, in general, there w
be a family of surfaces on either side of the level set. We
expect,a priori, that the LEB-scale PDF will be, in genera
an increasing function of decreasingl. The LEB-scale PDF,
f d(l), can be interpreted as a scale-dependent measu
the surface-area/volume ratio, in 3D, of LEB surfaces t
are equidistant from the isosurface by a distance;l/2. In
particular, the small-scale limit of the LEB-scale PDF, i.e

lim
l→0

f d~l!5
1

lm
, ~21!

where the scalelm is the mean LEB scale, is a measure
the area-volume ratio,Ad /Vd , whereAd is the surface area
of the level set andVd is a normalizing volume, e.g., th
volume spanned by the embedding space. The area-vol
ratio itself offers another~inverse! length scale,

Ad

Vd
5

1

ls
. ~22!

While for the special case of Poisson statistics this inve
area-volume ratio scale is identical to the mean LEB sc
i.e., ls5lm, we can expect that in general,lsÞlm, as is
the case in turbulence.

To quantify the structure of multidimensional surfaces
general, it will be necessary to analyze the dependenc
coverage statistics on all scales and the corresponding d
bution of such scales, in terms of the scale vector,l
[(l1 ,l2 , . . . ,ld). The coverage fraction,Fd(l), corre-
sponding to the coverage,Nd(l), is

x
le
of

FIG. 3. Schematic of surfaces constructed such that they
equidistant to the fluid interface. The offset distance isl/2, wherel
is the LEB scale corresponding to LEBs centered on these surfa
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Fd~l!5
Nd~l!

)
i 51

d S d i

l i
D , ~23!

cf. Eq. ~7!, where d5(d1 ,d2 , . . . ,dd) is the scale vector
corresponding to the multidimensional bounding box. T
coverage and coverage fraction are related to the cove
dimension,Dd(l), by

Dd~l![2
] logNd~l!

] logl
[I2

] logFd~l!

] logl
, ~24!

i.e., the coverage dimension becomes a vector,Dd

[(Dd
(1) ,Dd

(2) , . . . ,Dd
(d)), where I here denotes the unit

vector I[(1,1, . . .,1). In the particular case of fractal o
self-affine scaling, i.e., if Dd(l) is a constant or

l-independent vector,Nd(l);l
1
Dd

(1)

l
2
Dd

(2)

. . . l
d

Dd
(d)

, cf. dis-
cussion of the power law in Eq.~4!. In the general case,

Nd~l!5expS (
i 51

d E
l i

d i
Dd

( i )~l i !
dl i

l i
D , ~25!

so that, as required at the largest scales,Nd(d)51. In the
scale-dependent case, in other words, the complexity
structures at different scales can contribute to the cove
behavior at a particular scale. The LEB-scale distribut
becomes a joint probability density function of LEB scale
f d(l), normalized so that

E
0

d1
. . . E

0

dd
f d~l!dl51, ~26!

for data bounded in a multdimensionald-sized bounding
box. This scalar-valued PDF retains the original geome
meaning, i.e., as the probability density of finding al-sized
largest empty box~LEB!, but is now a joint probability den-
sity of the LEB-scale vector,l.

These considerations are particularly useful for quant
ing and modeling the spatial or space-time structure of c
voluted surfaces. For example, this framework is usefu
the context of quantifying the physical structure of fluid i
terfaces and the total amount of mixing or mixing efficien
in turbulent flows. The space-time analysis enabled by
framework is relevant to the study of the evolution of su
faces in general, and of the dynamics and velocity distri
tion of spatial structures of different sizes and shapes in
bulence, in particular, such as mixed-fluid interfaces a
vortical structures.

III. STRUCTURE OF CONVOLUTED SURFACES AND
FLUID INTERFACES

In the context of turbulent flows, Poisson and lognorm
scale distributions are particularly relevant as they have b
reported for level crossings of velocity and scalar sign
measured in various flows@40,41#. In grid turbulence, ex-
ploratory investigations of zero crossings of 1D velocity s
nals in grid turbulence@42# measured the mean spacin
scale,l m, which determines the small-scale behavior of t
coverage fraction,F1(l→0);l/ l m. In turbulent boundary
e
ge

of
ge
n
,
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-
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-
-
r-
d

l
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e

layers, measurements of the spacing PDF were reporte
exhibit Poisson statistics@40#. For Poisson random point pro
cesses, in general, i.e.,

p1~ l !dl5exp~2 l / l m!dl/ l m, ~27!

the coverage dimension function is

D1~l!512
l/ l m

el/ l m21
. ~28!

Figure 4 comparesD1(l) to an ensemble-averaged resu
from five Monte-Carlo simulations. For each simulation,
randomly-placedL-record, whereL/ l m51000, was parti-
tioned successively into smallerl intervals and the coverag
fraction computed for eachl. The standard deviation of th
ensemble-averaged Monte Carlo estimates is smaller than
symbol size. Poisson processes, in general, therefore, ar
sociated with a coverage dimension that increases smoo
with scale. This was pointed out, qualitatively, in early stu
ies of the fractal facets of turbulence@9#. Lognormal statis-
tics for the PDF of spacings derived from 1D level crossin
have also been reported. Examples include scalar meas
ments in turbulent jets@43,29# or in plumes dispersing in the

FIG. 4. Scale distribution~a! and dimension as a function o
scale~b! for Poisson point processes. Theory: solid line; simu
tions: squares.
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570 PRE 62HARIS J. CATRAKIS
atmospheric surface layer@41#, and velocity measurements i
turbulent boundary layers@40#. For a lognormal spacing
scale PDF, i.e.,

p1~ l !dl5exp$2@ ln~ l / l m!/s1s/2#2/2%dl/~A2ps l !,
~29!

the coverage dimension is

D1~l!512H 11
l m

l F11erf@„ln~l/ l m!/s2s/2…/A2#

12erf@„ln~l/ l m!/s1s/2…/A2#
G J 21

.

~30!

This is compared with ensemble-averaged results from
Monte-Carlo simulations withL/ l m53000 in Fig. 5. Similar
qualitative behavior was also observed through other si
lations based on a lognormal PDF@43#. Comparison of Figs.
4 and 5 shows that Poisson and lognormal statistics are
sociated with a coverage dimension function that exhib
similar ‘‘S-shaped’’ behavior. In both cases, therefore,
dimension increases smoothly with scale with a scale dep
dence that reflects the underlying spacing-scale distribut
There are two notable differences. The lognormal dimens
exhibits a reflection symmetry in logl coordinates about the
mean-scale point@l5 l m, D1(l)51/2#. Second, the addi
tional degree of freedom afforded by lognormal statistics

FIG. 5. Scale distribution~a! and dimension as a function o
scale~b! for lognormal point statistics. Theory: solid line; simula
tions: squares.
e

u-

s-
s
e
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n

n

terms of the standard-deviation parameter,s, allows the
spread in the variation ofD1(l) values with scale to be
varied. It is interesting that the qualitative difference inp1( l )
for small spacing scales, in the lognormal and Poisson ca
does not have a significant effect in the coverage behav
cf. Figs. 4 and 5. This can also be seen from Eq.~12!. Power-
law statistics forp1( l ), over a finite range of scales, e.g.,

p1~ l !dl5H a dl/ l 1 , for l , l 1 ,

a~ l / l 1!2ndl/ l 1 , for l 1, l , l 2 ,

0 for l 2, l ,

~31!

correspond to a dimension function,

D1~l!55
l/ l 1

2~n2a12n!/~n21!2l/ l 1 ,
for l , l 1 ,

b l 1 /l1~12n!~ l 2 /l!n21

22n1b l 1 /l2~ l 2 /l!n21
, for l 1, l , l 2 ,

1, for l 2, l ,
~32!

where a5121/n, a[ l 2 / l 1 , b[n(n21)an21/2, and l m
5(n21)(a22n2n/2)/@(22n)/(n2a12n)#. This is plotted
in Fig. 6, for n53/2 and l 2 / l 151000, i.e., for power-law

FIG. 6. Scale distribution~a! and dimension as a function o
scale ~b! for 1D power-law statistics over three decadesn
53/2,l 2/l 15103). Theory: solid line; simulations: squares.
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scaling imposed over three decades. Comparison to
Monte Carlo simulations withL/ l m54000 is also shown
The limiting case,l 2 / l 1@1, for a power-law distribution of
scales is interesting since it may be expected to corresp
to a vanishing finite-size effect. It can be shown, from E
~12!, that

D1~l!→const5n21 for l 1! l ! l 2 , ~33!

for 1,n,2, i.e., the coverage dimension is expected to
ymptote to a scale-independent plateau in this limit. This
examined in Fig. 6 where the dashed line corresponds to
case ofn53/2, for example. It is surprising that the covera
dimension does not display a clear plateau, even though
imposed power-law scaling spans, in this case, three dec
of spacing scales. It follows, therefore, that the finite range
scaling has a strong influence on the coverage-dimen
behavior. This observation is significant because it imp
that finite-range power-law scaling of the scale distribut
will not translate to a clear plateau inD1(l) unless the scal-
ing range is very large. For example, Fig. 7 shows the c
responding results for power-law scaling imposed over e
or ten decades. Again, it is surprising how slowly t
coverage-dimension behavior approaches a plateau as
number of decades of imposed scaling is increased. If, on
other hand,

FIG. 7. Coverage dimension as a function of scale for pow
law point statistics imposed over six decades~a! and over eight
decades~b!, with n53/2.
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D1~l!5D15const, ~34!

or, equivalently,F1(l);l12D1, for l1!l!l2, then Eq.
~13! can be used to show that

p1~ l !; l 2D121, ~35!

with a dimensional prefactor. Therefore, while a power-la
coverage fraction, over a range of scales, implies a pow
law p1( l ) in the same range, the converse is not true. Thi
a manifestation of the non-local, integral nature of the f
ward transform, cf. Eq.~12! and related discussion. A speci
case of the continuous, power-law scale PDF of Eq.~31!, for
a power-law exponent ofn51, has a coverage dimensio
which increases continuously with scale, as shown in Fig
~left!. Another special case of Eq.~31! is a power-law PDF
with an exponent ofn52 and this has a coverage dimensi
which also increases smoothly with scale, as shown in Fi
~right!. The casen51 is significant because it involves
simple, dimensionless weighting of scales which has b
used in the description of turbulent shear-layer mixing@44#.
The coverage dimension function need not be monoto
For a single-scale PDF, e.g., equally-spaced points on a
the coverage dimension can be shown to exhibit a s
increase at the characteristic scale of the PDF. This beha
implies that the only change in the complexity of the set,
a function of scale, occurs at the single characteristic scal
the PDF, as may be argueda priori. A two-scale PDF,

p1~ l !5
1

2
d~ l 2 l 1!1

1

2
d~ l 2 l 2!, ~36!

has the coverage dimension

D1~l!5H 0, l, l 1 ,

1

11l/ l 1
, l 1,l, l 2 ,

1, l 2,l,

~37!

as shown in Fig. 9~left!. The analytical coverage dimensio
changes only in the range of scales bounded by the two c
acteristic scales, and decreases with increasing scale, in
range, so that the behavior of the coverage dimension is n
monotonic. This behavior is confirmed by numerical resu
from 4 Monte Carlo simulations withL/ l m53000, also
shown in Fig. 9~left!. The discrepancy, at one of the small
scales, between analysis and simulation stems from the
crete nature of scales employed in the box counting. Disc
fractal-like objects can also be generated, correspondin
stochastic statistically-homogeneous variants of well-kno
fractal sets,

p1~ l !5
a21

aN21 (
k50

N21

akdS l 2
l 0

bkD , ~38!

with a coverage dimension function,

r-
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D1~l!55
0, l,

l 0

bN21
,

(
i 5k11

N21 S a

bD i

(
i 5k11

N21 S a

bD i

1
l

l 0
(
i 50

k

ai

, H l 0

bk11
,l,

l 0

bk ,

k50, . . . ,N21,

1, l 0,l.

~39!
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Such objects have discrete-scale PDFs as opposed to
continuous-scale PDFs studied above. This scale PDF is
zero at scales generated by a power-law with a single c
acteristic scalel 0 and parameterb. The probability densities
are delta functions at these scales, generated from ano
power-law with parametera. The parametersa andb, and the
scalel 0, can be chosen to study several stochastic variat
of the Cantor set. As an example,a52 and b53 would
correspond to the stochastic version of the classical fra
middle-third Cantor set. Ten generations of this set resul
a coverage dimension shown in Fig. 9~right!. Multiple re-

FIG. 8. ~a! Coverage dimension for a continuous power-la
PDF of spacing scales withn51, cf. table entry 1.7.~b! Coverage
dimension,D1(l), for a continuous power-law PDF of spacin
scales withn52, cf. table entry 1.8.
the
n-
r-
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gions of nonmonotonicity are evident. The coverage dim
sion seems to develop a plateau with superimposed osc
tions, at a value near theD15 log 2/log 3.0.63 for the
inhomogeneous Cantor set in the small-scale limit, and
indicated as a dashed line.

An example of a concentration field,c(x,y), measured in
a liquid-phase turbulent jet is depicted in Fig. 10. The ima
is a two-dimensional spatial slice recorded at a far-field
cation ofz/d0.275 nozzle-exit diameters and in the simila
ity plane, i.e., normal to the jet axis, employing laser-induc

FIG. 9. ~a! Coverage dimension for two-scale PDF, and resu
from four Monte Carlo simulations withL/ l m53000.~b! Coverage
dimension for a discrete power-law PDF witha52 andb53, cor-
responding to a stochastic version of the classical fractal Cantor
for ten generations.
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FIG. 10. Two-dimensional spatial slice of the concentration field in the similarity plane and far field of a liquid-phase turbu
recorded at Re;104 using laser-induced fluorescence and digital-imaging techniques. Grey levels, from black to white, denote inc
values of the jet-fluid concentration.
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fluorescence and high-resolution digital-imaging techniq
@29,45,46#. The jet Reynolds number, Re.9.03103, is near
the regime of fully-developed turbulent flow. The Schm
number of the scalar species, aqueous disodium fluores
is Sc;103. Gray levels, from black to white, denote increa
ing values of the jet-fluid concentration. Of particular intere
in the context of quantifying mixing is the structure
mixed-fluid interfaces or level sets of concentration. Figu
11 depicts a scalar level set extracted from the tw
dimensional image data of Fig. 10. The scalar threshold
responds to the peak of the jet-fluid concentration PDF
this Re. The examination of scaling or fractal behavior of
fluid interfaces is facilitated in the present images beca
these measurements were conducted in the similarity p
and at a particular distance downstream (z/d0.275) to
avoid effects of the downstream variation of scales in t
flow. The Pe´clet number, Pe5Re Sc;107, is relevant for an
investigation of scaling properties of fluid interfaces whi
have been proposed in the high-Pe regime.

The two-dimensional scalar field was represented in te
of bilinear B-spline functions fitted through the normaliz
s
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-
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and calibrated digital-image data. The level sets were co
puted from the scalar field using the B-spline function re
resentation evaluated at a sub-pixel resolution oflp/4. Cov-
erage statistics of the 2D level sets were computed usin
2D box-counting algorithm in which adb-sized bounding
box was identified and partitioned into contiguousl boxes,
to compute the coverage fraction of the number of boxes
cover the level set, as a function of scale. Six images a
Reynolds number of Re.9.03103 were processed to com
pute ensemble-averaged coverage statistics. Linear,
dimensional transects were also constructed that p
through the level sets. Examples are shown in Fig. 12 wh
depicts 1D transects through the two-dimensional level
data of Fig. 11. The transects were generated via a Mo
Carlo Poisson algorithm to produce random linear cuts t
lie within the bounding box of the level set as indicated
Fig. 12. For the 1D coverage statistics, 103 transects were
constructed for each level set and the level-crossing locat
were box-counted, or tile-counted, using a 1D coverage p
cedure@47#.

High- and low-dimensional transects of complex multid
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FIG. 11. Level set of the concentration field derived from the image data of Fig. 10. The scalar threshold corresponds to the pe
jet-fluid concentration PDF at Re;104.
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mensional structures may be expected to have scale dist
tions that are similar, at least qualitatively. For surfaces
3D space, for example, 2D planar transects consist of line
curves with a scale distribution which may be similar to t
full scale distribution; 1D linear transects consist of poin
whose statistics may be expected to reflect the high
dimensional behavior. Figures 13 and 14 show the ensem
averaged coverage fraction,Fd(l), coverage dimension
Dd(l), and LEB-scale PDF,f d(l), for both the two-
dimensional scalar level sets and the corresponding o
dimensional transects, derived from the jet measuremen
Re.93103. The smallest diffusion scale of the concentr
tion field is estimated to be log10(lD /db).23.0, on the jet
axis. The spatial scale,l, is normalized by the size of th
2D-transect bounding box,db . For both the 2D and 1D data
the coverage fraction tends to unity at large scales, as
pected. At scales smaller thandb , however, the measure
ments show that

F2~l!.F1~l!, ~40!

i.e., the higher-dimensionality transects exhibit a larger c
u-
n
or

r-
le-

e-
at

-

x-

-

FIG. 12. One-dimensional spatial transects through the leve
depicted in Fig. 11. The linear transects were generated by a P
son process. The bounding box is also indicated.
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erage fraction. The coverage fraction is the geometric pr
ability that a randomly-placed box contains a part of t
object and this will be, in general, larger for the highe
dimensional transects. The coverage dimension for the
transects is shown in Fig. 13~b! and is plotted as the relativ
coverage dimension,Dd(l)2dt , wheredt is the topological
dimension. For the 2D as well as 1D level sets, the cover
dimension increases smoothly with scale,l. This quantity
ranges from zero, at the small scales, to unity, at the la
scales,

0<Dd~l!2dt<1, ~41!

for the fluid-interface data. The lower limit will be 0 regard
less of the topological dimension,dt , or embedding dimen-
sion,d. The upper limit will be 1 for points in 1D, curves i
2D, surfaces in 3D, etc. Such objects can be expected to
in the study of mixed-fluid interfaces in turbulent flow
Higher upper limits of the relative coverage dimension
possible for curves embedded in 3D space, e.g., vortex li

FIG. 13. Scale dependence of coverage fraction~a! and relative
coverage dimension~b! of spatial two-dimensional~solid line! and
one-dimensional~dashed line! jet transects.
b-
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The relative coverage dimensions, for the 1D and 2D d
agree at the smallest and largest scales, as expected. A
termediate scales, however, the measurements show tha

D2~l!21.D1~l!, ~42!

i.e., the higher-dimensionality transects, in this case,
found to be associated with a larger relative coverage dim
sion @47#. For objects that exhibit self-similar fractal scalin
an assumption is typically made that dimensions deriv
from transects should satisfyDd115Dd11. This assump-
tion is related to a theorem which applies to Hausdorff
mensions of nearly all transects through a fractal object@48#,
where ‘‘nearly all’’ means except for a set of transects
probability measure zero. The present data correspond
finite Reynolds number and the level sets cannot be con
ered as fractal, constant-dimension objects, which is one
the assumptions of this theorem. Also, the coverage dim

FIG. 14. ~a! LEB-scale PDF for two-dimensional~solid line!
and one-dimensional~dashed line! transects.~b! Dependence of the
mean LEB scale~crosses! and the normalized inverse-area-volum
ratio scale~squares! on the transect dimension.
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sions computed for the jet data are not Hausdorff dimens
but capacity, or Kolmogorov, dimensions for which there
no equivalent theorem. Nevertheless, the present conclu
that higher-dimensional box analysis captures more struc
than ensemble-averaged lower-dimensional box analys
qualitatively consistent with the behavior of spiral structu
@15# and is in agreement with other spatial and temporal
measurements of interfaces in jets@43#. This behavior can be
expected for fluid interfaces in other turbulent flows@36#.

The coverage statistics of the present 1D transects a
agreement with the LEB-scale PDF for the present meas
ments is shown in Fig. 14~a!. The data indicate that the prob
ability density of a LEB scale increases continuously w
decreasing scale, tending to a constant asl→0. While the
jet is not statistically homogeneous spatially,f d(l) retains
its meaning. For example, for the two-dimensional level s
f 2(l) it is the PDF of the size of LEBs, randomly place
interior to the db-box. The data indicate that,f 2(l→0)
. f 1(l→0), i.e., the higher-dimensional transects are as
ciated with a higher area-volume ratio, as anticipated@26#.
The present data indicate that

f 2~l!. f 1~l! for l,l̃, ~43!

while

f 2~l!, f 1~l! for l.l̃, ~44!

wherel̃ appears as a crossover scale. In other words, ab
this scale, it is harder to find large-scale empty space
regions not visited by the interface, for the 2D transec
Below the crossover scale, it is easier to find small-sc
empty regions for the 2D transects. The apparent cross
scale in the LEB-scale PDF behavior is partly a conseque
of the fact that the LEB-scale PDF is normalized. The me
LEB scale is larger for the lower-dimensional 1D transec
as shown in Fig. 14~b!. The inverse area-volume scale me
sure is also larger in 1D, indicating a lower area-volum
estimate, as expected@49#. Since the LEB-scale PDF is
scale-dependent area-volume measure, the data show
1D-transect estimates of the area-volume ratio are under
mates at smaller scales and overestimates at larger sc
when compared to 2D transect measures. The jet-tran
behavior is similar, in some respects, to Poisson-pl
transects. A notable difference is that the mean LEB sca
identical to the inverse area-volume ratio scale, for the P
son model, whilelm/ls;10 for these jet data, cf. Fig. 4
Data from transects of different dimensionality can be co
pared in terms of the inverse of the point density in 1
perimeter-area ratio in 2D, and area-volume ratio in 3D, s
as the scalels . These considerations are especially imp
tant in the context of phenomena for which 3D measu
ments are not readily possible, e.g., rock-fracture
earthquake-fault networks.

In turbulent flows, in general, the scale-dependence of
coverage dimension and the corresponding LEB-scale P
can be expected to reflect both the large-scale organ
structure of the particular flow and generic small-scale ch
acteristics. For example, in the coverage-dimension
scale-distribution behavior of the jet, exhibited in Figs.
and 14, respectively, a signature of the three-dimensio
s
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large structure of the jet can be discerned. At the sm
scales, the observed behavior can be modeled in terms
lognormal distribution of scales,

f 2~l!}erfc@$ ln~l/ l m!/s1s/2%/A2#/2l m, ~45!

with log10( l m/db).21.5 ands.1.2, as fitted to the inne
scales@45#. Lognormal spacing-scale statistics have been
ported at Reynolds numbers as high as Rel;5000 in plumes
dispersing in the atmospheric surface layer@41#. Such statis-
tics may be anticipated in various fragmentation/growth p
cesses describable in terms of stochastic multiplicative
quences @50#, and appear to be good candidates
quantifying the geometry of the Richardson-Kolmogor
cascade in turbulence, including both the break-up and p
ing of vortical structures.

A significant question, fundamentally and practically,
whether fluid interfaces become more folded, more wrinkl
or both, as the Reynolds number is increased. Previous w
has indicated that the concentration field in high-Reynol
number incompressible shear flows becomes nearly hom
neous, corresponding to well-mixed fluid, where a large v
tical structure is present@32,51,44,33,35#. One may expect,
therefore, that the relative degree of folding of the interfac
may decrease with increasing Reynolds number reflec
the presence of the large structure. Curvature statistic
fluid interfaces@52–55# may be useful in this context to
quantify the distribution of folds and wrinkles. In the prese
work, the scale-distributions framework leads naturally
two quantitative measures of folding and wrinkling of th
interfaces. Based on the LEB scale distribution,f (l), and its
physical meaning as the PDF of the size of the largest fl
region not containing a part of the interface, let us defin
dimensionless measure of folding as

F5S E
l*

d
f ~l!dl D 21

, ~46!

and a dimensionless measure of wrinkling as

W5E
f*

f 0
l d f~l!, ~47!

where f * 5 f (l* ), f 05 liml→0f (l)51/lm. The scale,l* ,
is a reference scale such that interfacial features of sizl
.l* may be considered as folds, and features of sizel
,l* may be considered as wrinkles. In turbulent she
flows, the interfacial folds can be viewed as features that
directly related to and generated by the large-scale vort
structures@56#. The interfacial wrinkles may be viewed a
the result of Richardson-Kolmogorov cascades to hig
wave numbers, i.e., large eddies breaking up into sma
eddies, or because of internal small-scale instabilities of
large structures and associated three-dimensional vo
stretching@56#. Figure 15 is a schematic of four scenaria
fluid interfaces with varying degrees of folding and wri
kling. Scenario~b! shows a schematic of an interface wi
low folding number but high wrinkling number, which ca
be expected to be relevant for high-Reynolds-number mix
in incompressible flows, because of the presence of la
vortical structures. Mixing in compressible flows, in which
is found that vortical motions are not as dynamically impo
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tant for mixing as in the incompressible case, may be
pected to be characterized more accurately by scenario~d!
which shows a schematic of an interface with high foldi
number and high wrinkling number. For the reference sc
l* , a good choice would be the Liepmann scale,lL , which
is the smallest scale that can be generated directly from
outer d-size scale of the flow, e.g.,lL /d;Re21/2 for the
laminar boundary-layer thickness that can be generated
single d-sized sweep across the turbulent region@7#. This
scale is not expected to depend on the Schmidt number s
large-scale vortical structure is independent of scalar di
sivity. The Liepmann scale is closely related to the Tay
scale, in terms of the Reynolds-number dependence,
marks the separation between the range of scales tha
generated directly from outer scales of the flow and the ra
of scales that correspond to outer-scale-independent dyn
ics.

FIG. 15. Schematic of fluid interfaces with varying degrees
folding and wrinkling, which can be quantified by a folding num
ber,F, and a wrinkling number,W. ~a! Low F and lowW. ~b! Low
F and highW. ~c! High F and low W. ~d! High F and highW.
Scenario~b! may be expected to be relevant for high-Reynold
number mixing in incompressible flows, in those flow regio
where large vortical structures are present. Scenario~d! would be
more relevant for compressible turbulent mixing.
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IV. CONCLUSIONS

The proposed framework can be used to quantify the
tribution of scales spanned by complex surfaces such as
interfaces in turbulent flows. The framework involves a m
tidimensional measure of scale and, therefore, can be use
quantify the four-dimensional space-time evolution of flu
interfaces. Other level sets, such as vorticity- or veloci
magnitude isosurfaces, can also be analyzed and mod
with this framework. The proposed measure of scale dis
butions can also be used to identify the geometric-scale a
logs of classical turbulence scales such as the Kolmogo
Taylor, or Batchelor scales. The inverse of the area-volu
ratio of the level sets can be computed, or modeled, as
inverse of the small-scale limit of the LEB-scale PDF, and
important to quantify the mixing efficiency in the case
mixed-fluid interfaces. Such scales are useful in analyz
and comparing Reynolds-number and Schmidt-number
fects on mixing in different turbulent flows.

The dimensionless folding and wrinkling numbers are e
pected to be useful for quantifying the contributions of t
large-scale and small-scale turbulent flow structure to
interfacial geometry. These folding and wrinkling measu
can be used to compare quantitatively interfaces gener
by turbulent flows, to quantify Reynolds number an
Schmidt number effects, to assess the performance of
posed flow-control techniques on mixing enhancement or
duction, and to quantify the contributions of the large- a
small-scale interfacial geometry to laser beam propagat
wandering, and attenuation in optically-active gases, for
ample. Also, these measures can be expected to be help
quantify the relative degree of organization of the lar
structure in a particular realization of the flow and to eva
ate the extent to which flow-control schemes can be use
organize the large structure of the turbulence and thus
enable an efficient study of the properties of the large str
tures.
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